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Summary

The acoustic impedance of sound absorbers in
the presence of grazing flow is essential informa-
tion when analyzing sound propagation within ducts.
A unification of the theory of the nonlinear acous-
tic resistance of Helmholtz resonators including
grazing flow is presented. The nonlinear resistance
due to grazing flow is considered to be caused by an
exciting pressure spectrum produced by the interac-
tion of the grazing flow and the jets flowing from
the resonator orifices. With this exciting pressure
spectrum the resonator can be treated in the same
manner as a resonator without grazing flow but with
an exciting acoustic spectrum.

One of the important implications of this model
is that a multiple degree of freedom resonator can
be analyzed with grazing flow. Using the grazing
flow pressure spectrum, the nonlinear acoustic re-
sistance can be properly distributed among the sev-
eral elements of the resonator.

The development of the model is presented in-
cluding both the determination of the exciting pres-
sure spectrum and the nonlinear acoustic resistance
derived from this spectrum. A comparison is made
between the results of the impedance model and some
experimental resistance data.

Introduction

The acoustic impedance of sound absorbers in
the presence of grazing flow is essential informa-
tion for the analysis or design of noise suppres-
sors. This impedance is used as the boundary condi-
tion for sound propagation analysis.

The acoustic impedance of Helmholtz resonators
is fairly well understood when there is no grazing
flow. There is a small frequency dependent resist-
ance component often referred to as the linear re-
sistance. This is caused by the viscous scrubbing
action of the fluid over the surfaces. With a high
amplitude acoustic pressure there is another resist-
ance component usually called the nonlinear acoustic
resistance. This is caused by the viscous dissipa-
tion associated with the jets emanating from the or-
ifices of the resonator l). Ingard(2) has shown ex-
perimentally that this nonlinear resistance is pro-
portional to the peak magnitude of the orifice ve-
locity. This proportionality has been shown analyt-
ically by Sirignano(3) and Zinn(4). The velocity
dependance of the acoustic resistance has been shown
to hold instantaneously and has been used to calcu-
late acoustic resistance with multiple frequency ex-
citation(5).

However, when there is a grazing flow impressed
upon the resonator the acoustic impedance is much
more complicated and not well understood. Large

nonlinear acoustic resi tances have been demonstrat-
ed experimentally(6,7? 8 ) even without high amplitude
acoustic signals. At the grazing flow velocities
encountered in typical turbofan ducts the acoustic
resistance due to grazing flow completely dominates
the other resistance phenomena, especially for per-
forated plate over honeycomb wall construction.

The grazing flow impedance has been handled in
a completely empirical manner with a variety of ap-
proaches(5 5,9). Little understanding has been ob-
tained except that the acoustic amplitude and graz-
ing flow effects seem to be additive. That is, the
amplitude effects dominate at low grazing flow but
are overcome by the grazing flow effects at high
grazing flow velocities.

The purpose of this paper is to unify the the-
ory of the nonlinear resistance of Helmholtz resona-
tors. The basic hypothesis of the model is that the
acoustic amplitude and grazing flow effects are man-
ifestations of the same phenomena. The grazing flow
effects can be handled in exactly the same way as
the acoustic amplitude effect. It is hypothesized
that the grazing flow interacts with the jets ema-
nating from the resonator orifices to produce a
spectrum of pressure perturbations at the orifice.
This pressure perturbation spectrum excites the res-
onator in exactly the same way as an acoustic spec-
trum to produce oscillating flow within the ori-
fices. This oscillating flow produces the nonlinear
resistance which is proportional to the resultant
root-mean-squared velocity.

Analytical Model

Excitation Pressure Spectrum

First the pressure excitation spectrum due to
the interaction of the orifice jets and the steady
grazing flow will be developed. The basic assump-
tion is that pressure oscillations are produced
within the potential core of the jet due to vortex
shedding from the grazing flow over this core. Con-
sider the model in Figure 1 where the potential core
of the jet is shown penetrating into the grazing
flow which has a velocity gradient as shown. It is
assumed that the potential core of the jet acts
somewhat like a solid body in a crossflow with vor-
tices shed off the trailing side of the body. The
frequency of this vortex shedding is assumed to be
characterized by a local Strouhal number. The jet
potential core is a cone and not a cylinder, but it
might be thought of as being made up of a multitude
of short cylinders which decrease in diameter away
from the wall. Near the wall where the jet poten-
tial core diameter is largest and the velocity is
low, low frequency vortex shedding will occur. Fur-
ther out in the flow the jet diameter has decreased
and the grazing flow velocity increased so that
higher frequency shedding will occur.
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The vortex shedding will cause pressure per-
turbations around the potential core. It is assum-
ed that the pressure perturbation amplitude felt
within the potential core at a distance y away
from the wall can be given as (all symbols are de-
fined in Appendix A):

P(y) = 2 CDWV2 (Y) (1)

where V(y) is the local grazing flow velocity in
the boundary layer and CD may be considered as an
oscillatory drag coefficient which is to be deter-
mined empirically. These pressure oscillations at
point y are assumed to occur at a frequency given
by

f(y) = S (2)

which is the usual type of Stroubal frequency rela-
tionship such as given by RoshkoalO). The Strouhal
number S can be expressed as

S = 0.212 (Rey)3/2
270 + (Rey)3 2

where

Rey = V(y) d(y)

is the local Reynolds number at a distance y f
the wall. Equation (3) was determined by fittin
the data from reference 10. These data were tak
with flow over cylinders, but they are assumed h
to apply locally to the conical potential core.
From equation (3) it is seen that for high Reync
number, S = 0.212.

The pressure perturbation in the potential
core must be converted to an oscillation at the
ifice. It is assumed that this can be done by a
inverse squared distance or area ratio relations
similar to that used in free field sound propaga
tion. This is done by multiplying equation (1)
(d(y)/do)2 to form

Po(y) = CD)OV
2 (y) d()

d
2

where Po(y) is the orifice pressure perturbati
amplitude caused by vortex shedding at point y.
The potential core diameter is assumed to vary a

d(y) = do - 2y tanOt

where Co( is the angle of the potential core er
sion due to mixing. This angle is assumed to be
seven degrees in all of the calculations which f
low. This is the value found for the jet mixing
angle of coaxial flow over a jet.

(5)

Resistance:

= (1 + 5.4xl0Ott +t V
Lr C d0 a- C

Reactance:

=X (t +)w cot (W )

Orifice Velocity:

Ivol =ol

(7)

(8)

(9)

where the orifice velocity at each selected frequen-
cy is

I l v11 = IPoil
pcQr(Qi +%i 2)

(10)

and NPoil is the peak pressure amplitude at each
frequency as determined by equations (2) and (5)
due to the grazing flow. Equations (7) to (10) are

(4) usually thought to describe the behavior of the
Helmholtz resonator without grazing flow. An addi-
tional empirical term is usually added to equation
(7) to account for grazing flow. However, with the

ken interpretation used in this paper these equations
hnre will handle grazing flow since the flow effect is

introduced through Poi in equation (10). Addi-
tional calculation considerations for the use of
these equations are found in Appendix B.

The first two terms in equation (7) represent
the linear resistance of the orifice (the second

or term requires t in feet); the first is a frequency

ship dependent term while the second is a steady flow or
ship low frequency limit term(5). The third term repre-
by sents the nonlinear resistance due to grazing flow

and a high amplitude acoustic pressure spectrum.
The orifice and correction (R) in equation (8) is
essentially zero(9) for the grazing flow velocities

(5) of usual interest. No attempt has been made here
to treat the orifice end correction differently than
in a previous empirical correlation(9). It is pos-

ion sible that (J ) may be correlated with V
o

in the
future.

Bs

(6) Equations (7) to (10) must be solved by itera-
tion to obtain the resistance (9) due to grazing
flow. If there is an acoustic spectrum present,this can be considered simultaneously with the graz-

ing flow pressure spectrum and each will contribute
to the resistance depending upon their magnitude and
frequency distribution.

Response of Resonator to the Excitation Pressure
Spectrum

Now that an oscillating pressure spectrum has
been developed, the response of the Helmholtz reso-
nator can be treated the same as in the case of no
grazing flow but with an acoustic excitation spec-
trum.

The following equations determine the response
of the resonator.

Simplified Model

The following simplified expressions are pre-
sented only to give a qualitative picture of the
principal variables involved in the analytical mod-
el. It is cautioned that these expressions are not
good enough for serious calculations where the re-
lations of the previous sections should be used.

Let the boundary layer be linear with a thick-
ness g and a velocity distribution be given by:

V y
V(y) = (11)

l
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Also let the oscillatory drag coefficient CD be
constant. Then using equations (6) and (ll), equa-
tion (5) becomes

P(Y) = 2 2 y (do -2y tan<) (12)2S d02

This is the oscillatory pressure in the resonator
orifice due to vortex shedding a distance y away
from the wall. It is interesting to note what the
peak of the frequency spectrum is. Since frequency
is related to y through equation (2), equation
(12) can be differentiated with respect to y to
obtain the maximum pressure. When this is done the
result is:

2

o,mnax V. )ov2 (13)

Now most of the response of the resonator (eq.
(10)) occurs at the tuned points (X = 0). Assume
that the peak pressure (eq. (13)) occurs at the
tuned point (in any event the pressure at the tuned
point is proportional to the peak). Then equation
(10) becomes:

IvI d:: 0i (14)

Assume that the linear resistances in equation (7)
are very small compared to the nonlinear resistance.
Further assume that Voi at the tuned point domi-
nates V

o
(eq. (9)), thus equation (7) becomes:

IvoiloiI (15)

Combining equations (14) and (15) (with ° = Qi)
there results

do V(
e C g (16)

Thus the nonlinear acoustic resistance due to graz-
ing flow increases with orifice diameter and graz-
ing flow velocity but is reduced by increasing
boundary layer thickness. This would imply that
woven or sintered materials with very small hole
sizes would have less grazing flow resistance than
a typical perforated plate.

The above expression agrees qualitatively with
the experimentally determined effect of the grazing
flow velocity and boundary layer thickness on the
acoustic resistance found in reference 6.

Comparison of Theory and Data

In all of the calculations which follow the
complete model of equations (2) to (10) and the
equations in Appendix B were used. Included herein
is the determination of the functional form of CD,
a comparison for steady flow resistance and a com-
parison for specific acoustic resistance.

nEmpirical Determination of CD

A wide variety of steady flow resistance data
with grazing flow was studied to find the function-
al form of the oscillatory drag coefficient CD in
equation (5). These data included many grazing

flow velocities, orifice diameters and open area
ratios as well as boundary layer profiles with and
without boundary layer trips. These data were sup-
plied by The Boeing Company, Wichita, Kansas.

The theoretical model was exercised using a
wide range of values for CD in equation (5). The
calculated values of resistance were compared to
each experimental data point and the best value of
CD was determined. The best form of the oscilla-
tory drag coefficient was found to be

CD = k J-
(17)

where k is a constant which will be determined in
the next two sections for steady flow and acoustic
resistance calculations. It is interesting to note
that by use of equation (2), equation (17) can be
expressed as

CD = kJ (18)

Thus CD is a function only of the local pressure
perturbation frequency due to the vortex shedding
from the potential core of the jet.

Steady Flow Resistance Comparison

The steady flow resistance data mentioned
above (from The Boeing Co., Wichita, Kansas) was
obtained by measuring the steady-flow pressure drop
(aP) and flow velocity (Va) through the array of
orifices. These measurements were obtained for a
variety of perforated plate samples in the presence
of several grazing velocities. The resistance val-
ues used were for vanishingly small steady flows so
that the flow would not influence the resistance.
The calculated values of resistance include only
the second and third terms of equation (7) (not
frequency dependent) since only the steady flow re-
sistance is considered here.

The comparison of the experimental and calcu-
lated steady flow resistances are shown in Figure 2.
The solid symbols represent data taken with a 3/16
inch boundary layer trip. The boundary layer pro-
files provided with the data were simulated in the
theoretical calculations. The calculated values
are seen to compare quite well with the experimen-
tal data.

The value of k used in equation (17) was
14.0. This value may seem quite large until it is
recalled that d(y)/V(y) is quite small, and the
resultant CD values are thus quite moderate.

Specific Acoustic Resistance Comparison

For comparisons with specific acoustic resist-
ance data, all of the terms in equation (7) were
used for the theoretical resistance calculations.
The same functional form of CD given by equation
(17) was used with only a small change made in the
value of k.

Some acoustic resistance data along with rep-
resentative boundary layer profiles are given in
reference 8. There was considerable scatter in
these data, and average values were used. These
data are compared to the theoretical calculations
in Figure 3. The agreement is seen to be excellent
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for four of the five samples. No satisfactory ex-
planation can be given at this time for the disa-
greement of the theory with this single liner sam-
ple.

The value of k used for the comparisons of
Figure 3 was 11.5. Although this differs slightly
from the value used with steady flow impedance
(14.o), it is not unusual that these two somewhat
different phenomena (steady flow and acoustic re-
sistance) would require such a difference.

Sample Excitation Pressure Spectra

One of the ways in which this model can be
checked and possibly altered is to measure the ex-
citation pressure spectrum which is impressed upon
the orifice of the resonator. Plans have been made
to provide this experimental check. It is thus in-
teresting to look at some excitation pressure spec-
tra to see what the model, as presently constituted,
would predict.

In all of the pressure spectra which follow,
equation (5) was used to calculate the pressure am-
plitude and equation (2) was used to calculate the
frequency. This was accomplished by varying the
distance from the wall (y) in both equations. Equa-
tions (3), (4), and (6) were used in the process
along with a 1/7 power velocity profile.

In Figure 4 the spectrum levels are given for
three different velocities with only a slight vari-
ation in boundary layer thickness. The slight
change in 9 was due to making the calculations
at the same axial distance from the beginning of
boundary layer build up, and C is a weak function
of V. . Note that these spectrum levels are based
on a per frequency normalization and must be inte-
grated to generate more common forms such as 1/3
octave spectra.

The low frequency portions of the spectra in
Figure 4 are seen to be coincident for all three
grazing flow velocities. The spectrum level peaks
at a frequency which appears to be proportional to
grazing flow velocity and then falls off. It would
be more satisfying to see the spectrum level lower
at all frequencies for Vo = 100 fps than for 600
fps. The spectra in Figure 4 indicate that essen-
tially all of the difference in nonlinear acoustic
resistance due to grazing flow would be controlled
by the resonator response at the second and third
tuned frequencies (Z 8000 and 14,000 Hz). Essen-
tially no difference would be caused by the response
at the first tuned frequency of 2500 Hz.

In Figure 5 spectrum levels are presented for
differing boundary layer thicknesses at a constant
grazing flow velocity. Again the low frequency
parts of the spectra are coincident. The change in
nonlinear acoustic resistance due to grazing flow
will be controlled by the third tuned frequency at
14,000 Hz.

The accuracy of the spectra presented above
cannot be judged at this time. Detailed pressure
spectra measurements will be needed to check the
model.

Concluding Remarks

The important point in this paper is that the
nonlinear acoustic impedance due to grazing flow may

be able to be treated in exactly the same way as a
high amplitude acoustic spectrum without grazing
flow. An important implication of this approach is
that complex acoustic liner constructions, such as
double or multiple degree of freedom acoustic lin-
ers, can easily be analyzed with grazing flow.
Once the pressure spectrum due to grazing flow is
established the complex liner can be analyzed with
the nonlinear acoustic resistance properly distrib-
uted among the several flow paths within the liner.

This paper must be considered as just a start
in understanding the fundamentals of the grazing
flow impedance. Some of the basic assumptions of
the model must be checked experimentally. The spec-
trum of the exciting pressure in the orifices must
be measured to determine if the development of the
spectrum through equations (1) to (6) is indeed rea-
sonable. Some modifications of the approach will no
doubt be necessary after careful study of data.

Several other questions may arise in regard to
this model. How does the orifice jet flow get
started so that the jet-grazing flow interaction
pressure spectrum can get established and ultimately
dominate the impedance? Any disturbance can trigger
the flow in the resonator just as noise or tran-
sients can trigger an electric oscillator. The wall
pressure fluctuations due to the boundary layer as
shown by Bull(ll) can easily start the process.
However, these pressure fluctuations alone are not
high enough to explain the magnitude of the grazing
flow resistance. Also it can be shown that the
standard pressure spectrum due to the boundary layer
provides a dependence upon boundary layer thickness
which is inverse to the experimentally measured
acoustic resistance dependence. The model of this
paper has been shown to have the proper qualitative
dependence upon boundary layer thickness (eq. (16)).

A second question occurs in that the jet flow
is not always out of the orifice as shown in Figure
1 but is flowing into the orifice half of the time.
During this inflow probably the only pressures on
the orifice are the standard random spectrum due to
the boundary layer and possibly pressure fluctua-
tions due to separations and impingement on the ori-
fice edges. The solution for the exciting spectrum
in the actual case of alternating flow direction
would indeed by very difficult, and it is hoped that
this added complication can be adequately handed by
the empirical determination of CD in equation
(17).

A more sophisticated approach to the erosion
of the potential core of the jet might also be
tried. The erosion angle OC is probably a func-
tion of several variables including jet velocity
and the boundary layer profile. However, this is
probably not worthwhile since it was found that most
of the exciting pressure spectrum of consequence is
produced very near the wall and is more a function
of the initial jet diameter and the boundary layer
profile than the erosion angle.

The model does provide an adequate explanation
for most of the available grazing flow acoustic re-
sistance data. It is hoped that this model will
provide a beginning for the better understanding of
the physics of the problem.
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Appendix A -- Symbols

b resonator cavity depth
c speed of sound
CD oscillatory drag coefficient (see eq.

(1) and (17))
d(y) jet core diameter, shown as function

of y
do resonator orifice diameter
f frequency
f(y) frequency of pressure perturbations at

a distance y from the wall (eq. (2))
k empirical constant (see eq. (17))
X orifice and correction
P(y) pressure perturbations in the jet core

at y
Po(y) pressure perturbations at the orifice

due to P(y)
Poi pressure perturbations at the orifice

at the ith frequency of the excita-
tion spectrum

Po,max the peak of the pressure excitation
spectrum

la P steady flow pressure drop across an ar-
ray of orifices

Rey Reynolds number (see eq. (4))
S Strouhal number (see eq. (2))
t orifice length
V(y) grazing flow velocity at a distance y

from the wall
Va steady flow velocity through an array

of orifices
veO grazing flow velocity far from the wall
VO rms orifice velocity
Voi orifice velocity at the ith excitation

frequency
Voi,eff effective orifice velocity at the ith

excitation frequency
Xi maximum orifice fluid displacement at

the ith frequency
y distance away from the liner
OIL jet core erosion angle
g boundary layer thickness
o specific acoustic resistance
ii specific acoustic resistance at the ith

excitation frequency
,AA.. dynamic viscosity
Y- kinematic viscosity
or open area ratio (orifice area to wall

area)
9t specific acoustic reactance
'Xi i. specific acoustic reactance at the ith

excitation frequency
angular frequency

Appendix B
Additional Calculation Considerations

Several more detailed considerations were de-
ferred from the previous discussions to keep the
development as uncomplicated as possible. These
considerations will now be discussed.

Effect of Orifice Fluid Displacement

It was shown in reference 5 that at high fre-
quencies the acoustic resistance was less than that
predicted on the basis of peak orifice velocity
(e.g., eq. (7)). This was interpreted (in ref. 5)
as being due to the small orifice fluid displace-
ment at high frequencies. If the displacement is
small a jet will not fully form and the energy dis-
sipation and thus the resistance will be decreased.
This phenomenon can be handled in the following way
by the use of an effective orifice velocity. Let

id /2

Voi,eff Voi e (Bl)

where X
i

is the maximum displacement of the ori-
fice fluid at the ith frequency. If the fluid dis-
placement is large compared to the orifice diameter
then

Voi,eff o Voi

but if Xi<< do then

Voi,eff " 0

(B2)

(B3)
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For a sinusoidal oscillation,

Voi Voi

Thus equation (B2) can be converted to

2frf do 2

voif = V e x i
oi,ef o i '

This approach provided a very good fit to the
acoustic resistance data in reference 5.

Interpolation of Velocity Response Between Incr
mental Frequencies

The velocity response of the resonator is
to be a function of the resistance and reactanc
(eq. (10)). This response is greatest at the t
frequencies (Xi = 0). Since the increments in
frequency could not easily be selected to ensur
hitting all of these tuned points ( % changes
rapidly with frequency at the higher tuned poin
as can be seen by a plot of eq. (8)), an interp
tion procedure was devised to ensure inclusion
the effects of these points.

A velocity squared term integrated over ea
frequency increment is required in equation (9)
that an overall root-mean-squared velocity can
calculated to represent the effect of the entir
pressure spectrum. If none of the terms on the
right side of equation (10) vary rapidly with f
quency over the frequency increment of interest
then equation (10) can be used directly in equa
(9). The pressure and resistance can be safely
sumed constant over a reasonably small frequenc
increment but the change in reactance must usua
be considered.

By squaring and then averaging equation (1
through integration (and dropping the i subsc
for convenience) the following results:

V02 = ( o

Jd; df

f ( 2 +- 2)
(f2 - fl)

The reactance (I) can be represented sufficier
accurately by a linear Taylor expansion around
f = fo by,

%+ F) (f - f%)

where o and a% / f)o are determined fro
equation (8) at f = f (and using O = 2frf
By using equation (B7) in equation (B6) the res
ing integral can be integrated in closed form a
equation (B6) becomes:

where

(B4) (B9)%2,% 2 4 )o (f) f2-f

and

% .1 =X o + 7- (f - fo)~( i = 'Xo ,a-/
(B10)

(B5) If the slope of reactance with frequency (i /0f)O)
is very small equation (B8) can be shown to approach
the square of equation (10). Equation (B8) was used
for all of the calculations presented in this paper.

Summary of Calculation Procedure
re-

Since the equations are numerous and further
complicated by an iteration procedure, a summary of

seen the calculation procedure may be helpful.
ce
tuned First the excitation pressure spectrum due to
n grazing flow is established for the particular
re acoustic liner and boundary layer profile under
very consideration. A series of small steps away from
nts the liner wall are selected (several values of y).
pola- At these several values of y the pressure ampli-
of tude (eq. (5)) and frequency (eq. (2)) are calcu-

lated. Equations (3), (4), and (6) and of course
the desired boundary layer velocity profile are

ach used in this process. The excitation pressure
?) so spectrum terms (Poi in eq. (10)) due to grazing
be flow are now established. The acoustic pressure
re spectrum can now be added to the Poi if this is
-e desired.
fre-
t, Next the response of the resonator to the ex-
ation citation pressure spectrum must be determined. This
y as- is done by using equations (7) to (10) and (B5).
cy Recall that equation (B8) is an alternate to equa-
ally tion (10) which provides an interpolation between

the finite number of frequencies.

10) The reactance (Xi) at each frequency can be
cript calculated immediately from equation (8). A dilem-

ma occurs with equations (7), (9), and (10) in that
acoustic resistance cannot be calculated until the
rms velocity is determined, and the rms velocity
cannot be determined until the resistance at each
frequency is know. This clearly calls for an iter-

(B6) ation procedure.

1. Assume a value of Vol ; V. would be a
good start.

ntly
2. Calculate the resistance at each frequency

from equation (7).

3. Calculate the orifice velocity at each
(By) frequency (jVoi ) from equation (10), or alternate-

ly and perferably from equation (B8). Recall that
Om the i subscript has been omitted from equation
f). (B8) for brevity.
sult-
and 4. Correct each orifice velocity for the ori-

fice fluid displacement effect by using equation
(B5) which will give the effective orifice veloci-
ties.

-(B8) 5. Use the effective orifice velocities in
equation (9) to calculate the root-mean-squared ve-
locity (VOl ) for the entire spectrum.

6

r arctan (42) - arctan (41)1
(f2 - f1) V-) o

o %~ c 0'7
V 2 = ( _ )

0 wO T



6. Compare (Vol with that assumed in step 1.
It will be too small in the first iteration cycles.
Reduce the assumed IVoM in step 1 and repeat all
steps until the assumed and calculated JVoJ agree.
Interpolation can be used in the final steps of the
iteration to speed up convergence. After conver-

gence is obtained the desired values of resistance
are calculated from equation (7).

The above procedure may seem lengthly but it
is a simple job when performed on a computer.
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Figure 1. - Geometry used in analytical model.
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Figure 2. - Comparison of experimental and calculated
steady flow resistance (A P/pCVa).
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Figure 3. - Comparison of experimental and calculated acoustic
resista nce.
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Figure 4. - Variation of excitation pressure spectrum level with
grazing flow velocity.
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Figure 5. - Variation of excitation'pressure spectrum
level with boundary layer thickness for VOO
300 ft/sec.
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